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Abstract
In this paper, nonlinear model predictive control (NMPC) is proposed for
autonomous vehicle drifting, that is, stabilizing the vehicle at a desired unstable
equilibrium point. Firstly, a three-degree-of-freedom vehicle model with a
nonlinear tire model is introduced, and the equilibrium points are calculated.
The relationship between the desired unstable equilibrium point and the lateral
stability region is analyzed based on the phase plane method. Secondly,
NMPC is designed to force vehicle states to stay around the desired unstable
equilibrium point, that is, to keep the vehicle in sustained drifting. The terminal
region and terminal constraint of NMPC are determined off-line to guarantee
stability. Thirdly, Koopman operator theory and dynamic mode decomposi-
tion with control are introduced to obtain an approximately linear model, by
which the nonlinear optimization problem is converted to a quadratic program-
ming problem. Finally, comparative experiments are conducted by simulation,
in which various model uncertainties are considered. The effectiveness of the
proposed approach to achieve sustained autonomous drifting and to ensure
vehicle safety is illustrated, and the efficient implementation of the proposed
approach is also shown.
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1 INTRODUCTION

Vehicle safety is a key issue in autonomous driving.1 As an essential factor affecting vehicle safety, vehicle handling
stability quickly deteriorates under challenging scenarios, such as sharp cornering at high speed.2 For example, a possibly
recurrent chaotic motion will lead to severe skidding and rollover,3 which is a serious threat to vehicle safety, should be
avoided.4 Thus, the study of stabilizing a vehicle beyond its handling limits is necessary for autonomous driving.

The severe deterioration of vehicle handling stability will lead to the vehicle losing control, that is, the vehicle states can
not converge to a stable point.5 To address this issue, conventional research on vehicle dynamics has studied the vehicle
stability region, for example, Inagaki et al.6 approximate the stability region using the phase plane method. Within the
stability region, vehicle trajectories that start from different initial points converge to a stable equilibrium point. Outside
the stability region, the vehicle state deviates from all equilibrium points (including two unstable equilibrium points). By
restricting vehicle states inside the stability region, Inagaki et al.7 propose the scheme of vehicle stability control (VSC),
which is introduced to the market by Toyota.8 Similar technology is developed as well with different names, such as the
electronic stability program (ESP).9
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Unlike VSC or ESP, drift control forces vehicle states out of the stability region, such as the large yaw rate and
sideslip angle, to accomplish sharp cornering at high speed. Some studies have designed the combination method of
closed-loop and open-loop control based on racers’ experience to achieve vehicle drift.10 Kolter et al.11 present a proba-
bilistic approach to combine open-loop and closed-loop control for a vehicle drifting into a parking spot. The open-loop
control is designed for initiating vehicle states to temporarily drift along a predefined ideal trajectory, that is, transient
drifting. Zhang et al.12 propose a hybrid open-loop and closed-loop control strategy to achieve transient drifting along the
turning trajectory. The open-loop maneuvers are designed by observing expert drivers’ operation, and the closed-loop
part is designed by a linear quadratic regulator (LQR) approach. However, it is verified that the controller relies on the
open-loop control instead of LQR when the tracking error is significant. For open-loop control, the disadvantage of poor
resistance to disturbances is inevitable.

In addition to transient drifting, researchers have widely investigated sustained drifting. Voser et al.13 present the
existence of unstable “drift equilibria” related to steady state cornering with a large sideslip angle, where the direc-
tions of cornering and steering wheel are opposite, namely countersteer configuration. Based on the linearization
of a bicycle model with nonlinear tire characteristics, the separate proportional speed controller and state feed-
back steering controller are designed to stabilize vehicle states at the equilibrium point, which is proven to achieve
autonomous drift in the testbed. Inspired by this work, Hindiyeh et al.14 incorporate longitudinal dynamics in the
bicycle model, that is, a 3-degree-of-freedom (3-DOF) bicycle model. They reveal the steady state cornering conditions
associated with sustained drifting at the drift equilibria, that is, the execution of large sideslip angle, rear tire lateral
force saturation, and countersteer. Pole placement and proportional gain are independently designed to control steer-
ing and vehicle speed, respectively, which maintains vehicle states at the desired drift equilibrium. In the research
above, sequences of open-loop control are retained to guide vehicle states into the neighborhood of the desired drift
equilibrium.

Recently, various control methods have been applied in vehicle drift control, such as LQR,15 robust control,16 sliding
mode control,17 dynamic surface control technique,18 and backstepping control.19 Model predictive control (MPC), which
is capable of explicitly dealing with state and input constraints, is also used for achieving autonomous drifting. Kuck20

evaluates the performance of MPC in remote control of sustained drift. Based on the linearization of a bicycle model with
a nonlinear Fiala tire model, linear MPC is designed to stabilize vehicle states at the unstable equilibrium point. Manuel
et al.21 present an approach to teach a vehicle to drift like a professional driver, which is employed by a hybrid structure
consisting of an MPC and feedforward Neural Networks (NNs). A lower-level MPC stabilizes the vehicle around the
equilibrium states, and feedforward NNs provide the upper-level drift references and tire parameters. Guo et al.22 and Hu
et al.23 use the local linearization method to obtain a linear vehicle dynamics model at the unstable equilibrium point, and
design MPC to achieve sustained drift. For efficient computation of MPC, the control inputs are updated by solving the
quadratic programming (QP) problem at each time instant. However, the system stability is not considered in MPC design.

Since the computational burden of MPC will increase with the complexity of system dynamics, researchers use Taylor
expansion to obtain its linearized model of systems at the equilibrium point. Such a linearized model is only valid near the
equilibrium point, and the Jacobian matrix must be solved at each instant according to variant equilibrium points.24 Such
weakness can be avoided by global linearization methods, for example, Koopman operator theory.25 Koopman operator
theory uses an infinite dimensional linear model to describe the complex nonlinear system, which can retain primarily
the nonlinear dynamics of the system. Korda et al.26 and Zhang et al.27 have applied Koopman operator theory in MPC
for the prediction model. Due to the implementation difficulty of the infinite dimensional Koopman operator, dynamic
mode decomposition with control (DMDc) is developed to approximate the Koopman operator in finite dimensions.28

DMDc makes it possible to obtain a linear model with control for the design of MPC.29

This paper proposes a quasi-infinite horizon nonlinear model predictive control (NMPC) approach for sustained
drifting. A nonlinear 3-DOF vehicle model with nonlinear tire dynamics is adopted, where the influence of air resis-
tance is considered. Based on the 3-DOF vehicle model, the desired unstable equilibrium point is calculated, and the
lateral stability region is estimated using the phase plane method. The control objective is to drive vehicle states out-
side the stability region to the desired unstable equilibrium point. NMPC is designed for sustained drifting, where the
terminal region and the terminal constraint are calculated off-line to guarantee stability. To efficiently implement the
proposed approach, Koopman operator theory and DMDc are taken to approximately obtain a linearized vehicle model.
The computational burden is primarily reduced by converting the nonlinear optimization problem to a QP problem.
Comparative simulations that include system uncertainties are carried out to illustrate the effectiveness of the proposed
approaches.
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This paper is organized as follows: Section 2 presents the control problem based on a 3-DOF vehicle system model
and the vehicle dynamics analysis in the phase plane, Section 3 designs an NMPC with guaranteed stability which forces
vehicle states to stay at the desired equilibrium point and provides an approach for efficiently implementing autonomous
drifting, Section 4 illustrates the effectiveness and priority of the proposed approach by comparative experiments,
Section 5 is the conclusion including future work.

2 PROBLEM STATEMENT

In this section, a 3-DOF vehicle system model with nonlinear tire dynamics is introduced, and the influence of air resis-
tance is considered in vehicle drifting. Then different dynamic characteristics of vehicle states are analyzed around stable
and unstable equilibrium points in the phase plane. Finally, the control objective is proposed, that is, stabilizing vehicle
states outside the stability region to the desired unstable equilibrium point.

2.1 Vehicle system model

A 3-DOF (lateral velocity, yaw rate, and longitudinal velocity) vehicle model is introduced to describe nonlinear dynamics
of vehicle drifting.30 Since vehicle drifting typically occurs at high speed and sharp cornering, the 3-DOF vehicle model
is adopted instead of the 2-DOF vehicle bicycle model to consider the changing longitudinal velocity. As the schematic
diagram of the 3-DOF vehicle model shown in Figure 1, the left and right tires are lumped into one tire, which is consistent
with the assumption of the 2-DOF vehicle bicycle model. The equations of 3-DOF vehicle model are:30

⎧
⎪
⎪
⎨
⎪
⎪
⎩

v̇y = 1
m

(
Fyf cos 𝛿f + Fyr − CyAair

𝜌

2
v2
)
− vx𝛾,

𝛾̇ = 1
Iz

(
Fyf lf cos 𝛿f − Fyrlr

)
,

v̇x = 1
m

(
Fxr − Fyf sin 𝛿f − CxAair

𝜌

2
v2
)
+ vy𝛾,

(1)

where vy, 𝛾 , and vx are lateral velocity, yaw rate, and longitudinal velocity, respectively, Fxr is the longitudinal force of
rear tire, Fyf and Fyr are lateral forces of the front tire and rear tire, respectively. The influence of air resistance on lateral
and longitudinal velocity is considered in vehicle dynamics, where Cy and Cx are lateral and longitudinal air resistance
coefficients, respectively, Aair is the frontal area of driving direction, and 𝜌 is air density. As shown in Figure 1, the direction
of vehicle velocity v (v2 = v2

x + v2
y) is the vehicle heading direction, the sideslip angle 𝛽 = arctan(vy∕vx) is the angle between

vx and v, 𝛿f is front wheel steering angle, m is vehicle mass, Iz is the moment of inertia, lf and lr are the distances from the
center of mass (c.m.) to the front and rear axes, respectively.

In (1), the lateral forces of the front tire and rear tire are represented by Magic Formula,31 that is,

Fyf = Dsf sin(Csf arctan(Bsf𝛼f )), (2a)

Fyr = Dsr sin(Csr arctan(Bsr𝛼r)), (2b)

F I G U R E 1 Schematic diagram of 3-DOF vehicle model.
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4 SHI et al.

T A B L E 1 Parameters of the vehicle system.

Parameters Values Parameters Values

Vehicle mass m /(kg) 1833 Distance from c.m. to front axes lf /(m) 1.4

Moment of inertia Iz / (kg ⋅m2) 3065 Distance from c.m. to rear axes lr /(m) 1.65

Road friction coefficient 𝜇∕(⋅) 0.75 Gravity acceleration g / (m∕s2) 9.81

Front/rear tire coefficient Bsf / Bsr 11.16/11.37 Air frontal area Aair /(m2) 1.8

Front/rear tire coefficient Csf / Csr 1.68/1.75 Air density 𝜌 / (kg∕m3) 1.206

Front/rear tire coefficient Dsf / Dsr −7295.9∕ − 6190.4 Air resistance coefficient Cy / Cx −0.35∕0.37

where Bsf , Csf , and Dsf are front tire coefficients, Bsr, Csr, and Dsr are rear tire coefficients, 𝛼f and 𝛼r are sideslip angle of
front tire and rear tire, respectively, which can be approximately calculated as:31

𝛼f ≈ arctan
(vy + lf 𝛾

vx

)

− 𝛿f , (3a)

𝛼r ≈ arctan
(vy − lr𝛾

vx

)

. (3b)

Since the tire force should be lower than the ground adhesion,31 the forces of the front and rear tires should satisfy
the constraints as follows:12

|Fyf | ≤ 𝜇Fzf , (4a)

|Fxr| ≤ 𝜇Fzr, (4b)
√

F2
xr + F2

yr ≤ 𝜇Fzr, (4c)

where 𝜇 is the road friction coefficient, Fzf and Fzr are the vertical load of front and rear tires, respectively. Suppose
Fyf is given, then 𝛿f can be obtained by solving the inverse function of (2a) and (3a), that is,

𝛼f =
⎧
⎪
⎨
⎪
⎩

tan(arcsin(−Fyf∕𝜇Fzf )∕Csf )∕Bsf , if |Fyf | < 𝜇Fzf ,

tan
(
− 2𝜋

Csf

)
∕Bsf ⋅ sgn(Fyf ), if |Fyf | ≥ 𝜇Fzf ,

(5a)

𝛿f = arctan
(vy + lf 𝛾

vx

)

− 𝛼f . (5b)

The parameters are taken from an E-class Sedan car with 215/70 R17 tires in vehicle dynamic software CarSim, which
are listed in Table 1. The tire coefficients are identified based on the Levenberg-Marquardt method,32 which uses data of
the actual tire force on the dry concrete road surface. The corresponding road friction coefficient is set as 𝜇 = 0.75. The
air resistance coefficients are functions of the aerodynamic side slip angle 𝛽air, which is approximately set to 𝛽air = −10◦
(here the symbol ◦ is the unit of angle in degree). Note that uncertainties of road friction and air resistance coefficients
are considered in the simulation of Section 4.

2.2 Phase plane analysis

Rewrite (1) into a general form of nonlinear system, namely the original system:

ẋ = F(x,u), (6)
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SHI et al. 5

where x = [vy 𝛾 vx]T and u = [Fyf Fxr]T are the system state and the control input, respectively. An equilibrium point
x = xeq of a nonlinear system has the property that whenever the state of the system starts at xeq, it will remain at xeq for
all future time.33 For system (6), the equilibrium point (xeq

,ueq) is the root of the equation:

F(x,u) = 0, (7)

where xeq =
[
veq

y 𝛾

eq veq
x
]T and ueq =

[
Feq

yf Feq
xr
]T are the system state and control input, respectively, the symbol 𝜗eq

represents the value of variable 𝜗 at the equilibrium point. Since there are five unknown variables (veq
y , 𝛾eq, veq

x , Feq
yf and

Feq
xr ) in (7), the variables 𝛿eq

f (corresponding to Feq
yf by (5)) and veq

x are set in advance to solve the equilibrium points.
The results of xeq with 𝛿eq

f ∈ [−8, 8] (◦) are shown in Figure 2, the longitudinal velocity is veq
x = 20m∕s and the interval

is 𝛿eq
f = 1◦. Figure 2A,B represent the values of 𝛾eq and veq

y , respectively. As shown in Figure 2, there are three equilibrium
points corresponding to each 𝛿eq

f ∈ [−3, 3] (◦), which are represented by a red circle, a blue square, and a black square.
Otherwise, there is only one equilibrium point indicated by a blue square or a black square.

The characteristic of these equilibrium points and the qualitative system behaviors near them can be determined via
linearization concerning the point,33 that is,

ẋl = Alxl + Blul, (8)

where xl = x − xeq, ul = u − ueq, and the matrix coefficients are as follows:

Al =
𝜕F
𝜕x
|
|
|x=xeq

,u=ueq
, Bl =

𝜕F
𝜕u
|
|
|x=xeq

,u=ueq
, (9)

where the eigenvalues of Al can be used to obtain the dynamics near equilibrium points.
Take the cases of 𝛿eq

f = 0◦, 𝛿eq
f = 2◦, and 𝛿eq

f = −10◦ as the representatives to intuitively illustrate the characteristics
results in the phase plane. The state trajectories derived by numerical integration of (6) are shown in lateral velocity-yaw
rate (vy - 𝛾) phase plane (cf. Figure 3), where gray lines represent the state trajectories starting from the initial states shown
in black dots. Based on the state trajectories and phase plane method,6,34 the stability regions are estimated and shown
by red shaded areas in Figure 3A,B. The stability region is the indicator of vehicle stability during critical maneuvers,
that is, the vehicle state inside the stability region will move to the stable equilibrium point (shown in red circle) along
a specific trajectory.35 Otherwise, the vehicle state will not converge to a equilibrium point. That is, the vehicle will lose
lateral stability without external control.

(A) (B)

F I G U R E 2 Equilibrium points with veq
x = 20m∕s.
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6 SHI et al.

(A) (B) (C)

F I G U R E 3 Lateral velocity-yaw rate phase plane.

When entering a sharp corner at high speed, the vehicle state easily exceeds its stability region, which seriously
threatens vehicle safety.36 For example, the vehicle state from the black dot bypasses the unstable equilibrium points (rep-
resented by a blue square and a black square in Figure 3A,B) but does not converge. Even worse, the chaotic motion may
occur around unstable equilibrium points.37 It is worth noting that if 𝛿f is large enough, the static bifurcation will appear,
which leads to the disappearance of both the stability region and the stable equilibrium point.35 As shown in Figure 3C,
only an unstable equilibrium point is left. For this circumstance, conventional methods that restrict vehicle states inside
the stability region are inappropriate for stabilizing vehicles.

2.3 Control objective

This paper mainly studies an NMPC approach of steady state drifting to stabilize the vehicle state outside the stability
region, which avoids serious accidents even under high speed and sharp cornering operating conditions. The control
objective of NMPC is to achieve sustained drifting by tracking the unstable equilibrium point, that is, forcing vehicle states
to converge to xref :

lim
k→∞
||x(k) − xref (k)|| = 0, (10)

where k is time instant, (xref
,uref ) is the desired unstable equilibrium point, xref =

[
vref

y 𝛾

ref vref
x
]T and uref =

[
Fref

yf Fref
xr
]T

satisfy (7). The symbol 𝜁 ref represents the value of variable 𝜁 at the desired unstable equilibrium point.

Remark 1. The sustained drifting is the concern of this paper, while the transient drifting along a certain
trajectory will be introduced in the future.

3 NMPC DESIGN FOR AUTONOMOUS DRIFTING

In this section, a quasi-infinite horizon NMPC is designed,38 which takes the terminal constraint and the terminal penalty
into account. Considering the real-time implementation of autonomous drifting, an efficient implementation is proposed.

The discrete-time system to be controlled is obtained from the original system (6) using the Runge-Kutta method with
the sampling time Ts = 0.01s, namely the controlled system:

x(k + 1) = F(x(k),u(k)), (11)

where u(k) ∈ U and x(k) ∈ X are the system state and control input at the time instant k ∈ Z+ (Z+ is positive integer),
respectively. The constraints are

U = {u ∈ R
2 | − 7295.9 ≤ Fyf ≤ 7295.9, −6190.4 ≤ Fxr ≤ 6190.4}, (12a)

X = {x ∈ R
3 | − 20 ≤ vy ≤ 20, −1 ≤ 𝛾 ≤ 1, 0 ≤ vx ≤ 40}, (12b)
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SHI et al. 7

where the control constraint U is calculated by (4a) and (4b), the unit of Fyf and Fxr is Newton (N). In the state constraint
set X , the ranges of vy(m/s) and 𝛾(rad/s) are determined from the feasible values of lateral velocity and yaw rate in actual
scenarios,39 the range of vx(m/s) indicates that the vehicle moves forward reasonably.

For sake of controller design, transform the equilibrium point of the original system (6) from (xref
,uref ) to (0, 0) by

coordinate transformation:

Δx = x − xref
, Δu = u − uref

, (13)

where Δx = [Δvy Δ𝛾 Δvx]T = [vy − vref
y 𝛾 − 𝛾 ref vx − vref

x ]T and Δu = [ΔFyf ΔFxr]T = [Fyf − Fref
yf Fxr − Fref

xr ]T. Then the
original system is converted to:

Δẋ = ̃F(Δx,Δu), (14)

where Δx and Δu satisfy the equation ̃F(0, 0) = 0.
Then the transformed system is obtained by discretizing (14) with Ts:

Δx(k + 1) = ̃f (Δx(k),Δu(k)), (15)

where Δx(k) ∈ R3 and Δu(k) ∈ R2 are the system state and control input at the time instant k ∈ Z+, respectively. The
initial state is Δx(0) = Δx0. For all k ≥ 0, the system state and control input satisfy:

Δx(k) ∈ ΔX , Δu(k) ∈ ΔU, (16)

whereΔX andΔU denote the feasible sets of system state and control input for the discrete-time transformed system (15),
respectively, which can be obtained by (12) and (13), that is,

ΔU =
{
Δu ∈ R

2 | − 7295.9 − Fref
yf ≤ ΔFyf ≤ 7295.9 − Fref

yf , −6190.4 − Fref
xr ≤ ΔFxr ≤ 6190.4 − Fref

xr

}
, (17a)

ΔX =
{
Δx ∈ R

3 | − 20 − vref
y ≤ Δvy ≤ 20 − vref

y , −1 − 𝛾 ref
≤ Δ𝛾 ≤ 1 − 𝛾 ref

, −vref
x ≤ Δvx ≤ 40 − vref

x

}
. (17b)

3.1 NMPC with guaranteed stability

In this subsection, it is assumed that the states are completely obtained. Neither external disturbance nor the model
perturbation is considered.40 The uncertainties of controlled system are considered in numerical simulation.

The transformed system (15) satisfies the requirements as follows:

(A1) ̃f ∶ R3 ×R2 → R3 is continuous, and ̃f (0, 0) = 0, that is, (0, 0) is an equilibrium of the system.
(A2) ΔU ∈ R2 is compact and convex, ΔX ∈ R3 is connected, the point (0, 0) is contained in the interior of ΔX × ΔU.

Then the open-loop optimization problem of quasi-infinite horizon NMPC at the time instant k is formulated as

Problem 1.

minimize
Δū(⋅)

J(Δx(k),Δū(⋅)) (18a)

subject to Δx(𝜏 + 1|k) = ̃f (Δx(𝜏|k),Δū(𝜏|k)), (18b)

Δx(k|k) = Δx(k), (18c)

Δū(𝜏|k) ∈ ΔU, 𝜏 ∈ [k, k + N − 1], (18d)

Δx(𝜏|k) ∈ ΔX , 𝜏 ∈ [k, k + N − 1], (18e)

Δx(k + N|k) ∈ Ω, (18f)
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8 SHI et al.

where Δx(𝜏|k) is the predicted state trajectory of the system starting from Δx(k) under control input Δū(⋅),
N is the finite prediction horizon, ΔU and ΔX represent the constraints of control input and system state,
respectively. The cost function is

J(Δx(k),Δū(⋅)) =
N−1∑

i=0
L(Δx(k + i|k),Δū(k + i|k)) + E(Δx(k + N|k)) (19a)

with

L(Δx(k + i|k),Δū(k + i|k)) = ΔxT(k + i|k)QΔx(k + i|k) + ΔūT(k + i|k))RΔū(k + i|k)), (19b)

E(Δx(k + N|k)) = ΔxT(k + N|k)PΔx(k + N|k), (19c)

where the weighting matrices Q ∈ R3×3 and R ∈ R2×2 are positive definite and symmetric, and P is the weight-
ing matrix of terminal penalty. The terminal set Ω and the terminal cost function E(Δx(k + N|k)) will be
illustrated in more detail later.

The problem of stabilizing a vehicle around an unstable equilibrium point is equivalent to finding a feasible solution
to Problem 1. Suppose that the optimal solution of Problem 1 at the time instant k is

U∗(k) = {Δū∗(k|k),Δū∗(k + 1|k), … ,Δū∗(k + N − 1|k)}, (20)

whereΔu∗(k) ∶= Δū∗(k|k) is the actual control input. At next time instant (k + 1), the process above will be repeated with
the measurement of state Δx(k + 1).

To guarantee the stability of the system (15) under control, terminal ingredients that include terminal constraints and
terminal penalty are designed, where LQR is taken for the terminal control. Note that the terminal control law does not
act on the vehicle.

The Jacobian linearization function of system (15) at the equilibrium point (0, 0) is used to solve the controller, that is,

Δx(k + 1) = ÂΔx(k) + ̂BΔu(k), (21)

with

Â =
𝜕

̃f
𝜕Δx

|
|
|(0,0)

,

̂B =
𝜕

̃f
𝜕Δu

|
|
|(0,0)

. (22)

Since there is an eigenvalue of matrix Â out of the unit circle, the system (21) is open-loop unstable. The matrix
[ ̂B Â ̂B Â2

̂B] is row full rank, that is, system (21) is controllable and therefore stabilizable. Thus, there exists a linear
state feedback control law Δu = KΔx such that Ak ∶= Â + ̂BK is asymptotically stable. Define Q∗ = Q + KTRK ∈ R3×3,
and 𝜅 > 1 is constant, then the terminal ingredients satisfy:38,41

(C1) The discrete Lyapunov equation

AT
k PAk − P + 𝜅Q∗ = 0 (23)

can be calculated to obtain a unique symmetric positive-definite solution.
(C2) There exists a constant 𝛼 ∈ (0,∞) such that a neighborhood of equilibrium

Ω ∶=
{
Δx(k) ∈ ΔX|ΔxT(k)PΔx(k) ≤ 𝛼

}
(24)

is the terminal region of system (15). The corresponding terminal controller and terminal penalty function are Δu =
KΔx and ΔxT(k)PΔx, respectively. While Problem 1 is feasible at the initial instant, recursive feasibility of Problem 1 and
the stability of vehicle around the desired unstable equilibrium point are guaranteed.

Remark 2. Although robust MPC framework can handle uncertainties, it is conservative and computationally
heavy in general. Instead, previous studies have revealed that MPC with guaranteed nominal stability has
some ability to deal with disturbances.40
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SHI et al. 9

3.2 Efficient implementation

In this subsection, an efficient approach is proposed for implementing autonomous drifting in real time, namely
Koopman-based MPC, where Koopman operator theory and DMDc are introduced to reduce the computational burden
caused by complex nonlinear dynamics. Furthermore, the control problem can be converted to a QP problem.

Koopman operator theory is adopted to construct an alternative discrete-time linear system25

𝜍𝜑(Δx(k)) = 𝜑(Δx(k + 1) = 𝜑(̃f (Δx(k),Δu(k))), (25)

where 𝜍 and 𝜑 denote the infinite-dimensional linear operator and the corresponding observation function, respectively.
Since it is difficult to obtain an infinite-dimensional operator in practice, the DMDc algorithm is introduced to

approximate 𝜍 by finite-dimensional operator,28 that is, the transformed system (15) is approximately by

ΔxD(k + 1) ≈ DΔxD(k) + DΔuD(k), (26)

where ΔxD(k) ∈ R3 and ΔuD(k) ∈ R2 are the system state and control input, respectively,D ∈ R3×3 and D ∈ R3×2 are
matrices that need to be determined from observed data. Define the temporal snapshots of system measurements and
control input as data matrices:

XD =
[
Δx1

D Δx2
D · · · ΔxM

D
]
, (27a)

X′D =
[
Δx2

D Δx3
D · · · ΔxM+1

D
]
, (27b)

UD =
[
Δu1

D Δu2
D · · · ΔuM

D
]
, (27c)

where XD ∈ R3×M , X′D ∈ R3×M , and UD ∈ R2×M , Δxi
D and Δui

D denote the measurements of ΔxD and ΔuD at time instant
i, respectively, M is the number of snapshots. According to (26), the data matrices satisfy

X′D ≈ GD𝚿D (28)

where GD = [D D] and𝚿D =
[
XT

D UT
D
]T.

To find the best-fit solution of operator GD, singular value decomposition (SVD) is performed on matrix𝚿D, that is,

𝚿D ≈ ̃ ̃Σ ̃T (29)

where the truncation value of SVD is defined as p̃ = 3, ̃ ∈ R(3+2)×3, and ̃Σ ∈ R3×3 are unitary and diagonal matrix,
respectively.

Then the finite-dimensional approximate matrix is obtained

GD = [D D] = X′D ̃ ̃Σ
−1
̃

T
, (30)

where ̃ is decomposed as ̃ =
[
̃

T
1 ̃

T
2

]T
, ̃ 1 ∈ R3×3, and ̃ 2 ∈ R2×3. Then matricesD andD can be calculated by:

D = X′D ̃ ̃Σ
−1
̃1

T
, (31)

D = X′D ̃ ̃Σ
−1
̃2

T
. (32)

Take the approximately linear model (26) as the prediction model, the problem of stabilizing a vehicle around an
unstable equilibrium point can be converted to find a feasible solution to the following optimization problem.

Problem 2.
minimize
ΔūD(⋅)

JD(ΔxD(k),ΔūD(⋅)) (33a)

subject to ΔxD(𝜏 + 1|k) = DΔxD(𝜏|k) + DΔūD(𝜏|k)), (33b)

ΔxD(k|k) = ΔxD(k), (33c)
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10 SHI et al.

ΔūD(𝜏|k) ∈ ΔUD, 𝜏 ∈ [k, k + N − 1], (33d)

ΔxD(𝜏|k) ∈ ΔXD, 𝜏 ∈ [k, k + N − 1], (33e)

ΔxD(k + N|k) ∈ Xf , (33f)

whereΔxD(k) is the initial state,ΔxD(𝜏|k) is the predicted state trajectory of system (26),ΔūD(⋅) is the control
input. The cost function is

J(ΔxD(k),ΔūD(⋅)) =
N−1∑

i=0
L(ΔxD(k + i|k),ΔūD(k + i|k)) + ̄E(ΔxD(k + N|k)) (34a)

with

L(Δx(k + i|k),ΔūD(k + i|k)) = ΔxT
D(k + i|k)QΔxD(k + i|k) + ΔūT

D(k + i|k))RΔūD(k + i|k)), (34b)

̄E(ΔxD(k + N|k)) = ΔxT
D(k + N|k)PΔxD(k + N|k), (34c)

where Q ∈ R3×3 and R ∈ R2×2 are the positive definite and symmetric weighting matrices.

Since the matrix [D DD 
2
DD] is full row rank, the symmetric positive-definite matrix P of the terminal penalty

̄E(ΔxD(k + N|k)) can be solved by (23). The matrixΔuD = KDΔxD is obtained by LQR such that Ak = D + DKD is stable,
where Q∗ = Q + KT

DRKD ∈ R3×3, and 𝜅 > 1 is constant.
To find the terminal set Xf , the maximal admissible set is calculated using algorithm 3.2 proposed by Gilbert and

Tan,42 which satisfies43,44

(C3) Xf ⊆ ΔX , Xf is closed and (0, 0) ∈ Xf ,
(C4) ΔuD = KDΔxD ⊆ ΔU, ∀ΔxD ∈ Xf ,
(C5) (D + DKD)ΔxD ∈ Xf .

Accordingly, Problem 2 is converted to a QP problem.

Problem 3.
minimize

U(k)
U(k)THQPU(k) − GQP(k + 1|k)TU(k), (35a)

subject to CQPU(k) ≥ bQP(k + 1|k), (35b)

where U(k) =
[
ΔūD(k),ΔūD(k + 1), … ,ΔūD(k + N − 1)

]T
N×1 is the manipulated variable. Furthermore, the

first element Δū∗D(k) of the optimal solution U
∗
(k) will be applied to the controlled system (11). Due to the

space limitation, the derivation of matrices HQP, GQP, CQP, and bQP are omitted.

Remark 3. Two aspects affect the computation time of an optimization problem, that is, optimization method
(e.g., Newton method or heuristic search method) and hardware equipment (e.g., FPGA or GPU). In this
subsection, the nonlinear model is replaced by an approximately linear model, and the dimensions of the two
models are the same. Furthermore, the nonlinear nonconvex optimization problem is converted to a linear
convex optimization problem, which improves the computation efficiency. Since the MPC can handle some
disturbances and the magnitude of model errors is small, the effect of model errors on the system dynamics
can be ignored.

4 SIMULATION RESULTS

In this section, numerical simulation is carried out to present the effectiveness of the proposed NMPC approach and
the efficient implementation for autonomous drifting. Experiments are conducted to demonstrate the superiority of the
proposed approach over MPC without guaranteed stability and LQR. The robustness of the proposed approach is
illustrated by introducing various model uncertainties. Through the simulation conducted by Koopman-based MPC, the
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SHI et al. 11

potential of real-time implementing autonomous drifting is shown. The simulation is carried out in Matlab R2015b with
Processor Intel® CoreTM i7-10700 CPU @ 2.90 GHz and 16.0 GB RAM.

4.1 Autonomous drifting verification

This subsection presents the effectiveness of the proposed NMPC approach for achieving sustained autonomous drifting.
The desired unstable equilibrium point is calculated with vref

x = 20 m/s and 𝛿ref
f = −10◦, that is,

xref =
[

vref
y 𝛾

ref vref
x

]T
= [−5.1 0.3 20]T, (36a)

uref =
[

Fref
yf Fref

xr

]T
= [5879.9 1970.4]T, (36b)

where (4c) is used to calculate the maximum lateral force of the rear tire.
Then the constraints of the transformed system are calculated by (17):

ΔU ={Δu ∈ R
2 | − 13175.8 ≤ ΔFyf ≤ 1416, −8160.8 ≤ ΔFxr ≤ 4220.0}, (37a)

ΔX ={Δx ∈ R
3 | − 14.9 ≤ Δvy ≤ 25.1, −1.3 ≤ Δ𝛾 ≤ 0.7, −20 ≤ Δvx ≤ 20}. (37b)

Remark 4. Since the form of terminal constraint in (18f) is symmetric, the symmetric constraints are taken
for off-line calculation of terminal constraint, that is,

ΔU ={Δu ∈ R
2 | − 1416 ≤ ΔFyf ≤ 1416, −4220.0 ≤ ΔFxr ≤ 4220.0}, (38a)

ΔX ={Δx ∈ R
3 | − 14.9 ≤ Δvy ≤ 14.9, −0.7 ≤ Δ𝛾 ≤ 0.7, −20 ≤ Δvx ≤ 20}, (38b)

which are contained in the sets of (37a) and (37b), and the bounds are taken from the minimum absolute
values of the upper and lower bounds of (37a) and (37b).

To calculate the terminal constraint of (18f) and terminal penalty of (19c), the weighting matrices in (19b) are

Q =
⎡
⎢
⎢
⎢
⎣

250 0 0
0 250 0
0 0 30

⎤
⎥
⎥
⎥
⎦

, R =

[
10−5 0

0 10−5

]

. (39)

The linear state feedback control law obtained by LQR is

K =

[
5639.8 −30937.5 16.4
420.9 −325.7 −1736.0

]

. (40)

Given 𝜅 = 1.02, which satisfies the condition 𝜅 > 1, the terminal penalty matrix is

P =
⎡
⎢
⎢
⎢
⎣

8566.4 −24086.8 −796.1
− 24086.8 102895.3 620.2
− 796.1 620.2 3276.5

⎤
⎥
⎥
⎥
⎦

, (41)

and the constant 𝛼 = 13, 433.
As a comparison, an NMPC without guaranteed stability is designed to conduct simulation under the same operating

condition, in which the terminal constraint and terminal penalty are not considered. The prediction horizon is N = 15.
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12 SHI et al.

The initial state is Δx0 = [−1.2 0.2 − 2]T, which corresponds to the initial state x0 = [−6.3 0.5 18]T of the controlled
system (11). The simulation results are shown in Figures 4,5,6,7, and 8, where the solid black lines denote the proposed
NMPC approach with guaranteed stability, the blue dash-dot lines represent NMPC without guaranteed stability, the dash
red lines are the reference states corresponding to xref .

As can be seen from the evolution of vehicle states in Figures 4,5, and 6, the proposed NMPC approach can force
lateral velocity, yaw rate, and longitudinal velocity quickly converge to the reference values. On the contrary, vehicle states
diverge far away from the desired point by NMPC without guaranteed stability. The impact of such considerable state
deviations on vehicle lateral stability is intuitively shown in Figures 7 and 8.

As shown in Figure 7, the state trajectories are plotted in vy - 𝛾 phase plane, the black cross denotes the initial point, the
pentagrams are the end points, the blue square represents the desired unstable equilibrium point, and the grey shaded area
shows the terminal region. Using the proposed NMPC approach, the state trajectory converges to the unstable equilibrium
point in the terminal region. Once entering the terminal region, the vehicle states will not leave it, which means that the
vehicle states can be stabilized by the proposed approach. However, the NMPC without guaranteed stability can not make
the states return to the desired point and diverge in the opposite direction of the terminal region.

The corresponding vehicle positions and postures are shown in Figure 8, where black and blue polygons represent
schematic diagrams of the vehicle controlled by NMPC with and without guaranteed stability, respectively, the grey
shaded areas are the initial positions, and acute angles denote the vehicle heading direction. It can be seen that vehicle sus-
tained drifting is achieved by the proposed NMPC with guaranteed stability (cf. Figure 8A). However, by NMPC without
guaranteed stability, the vehicle seriously skids and gradually turns the heading direction (arrow pointed in Figure 8B),
which means that the lateral stability is lost. Such a phenomenon jeopardizes vehicle safety, which is consistent with the
disappearance of stability region in subsection 2.2.

F I G U R E 4 The evolution of lateral velocity.

F I G U R E 5 The evolution of yaw rate.
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SHI et al. 13

F I G U R E 6 The evolution of longitudinal velocity.

F I G U R E 7 States trajectories in vy − 𝛾 phase plane.

(A) (B)

F I G U R E 8 Vehicle position and posture diagram in inertial coordination.
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14 SHI et al.

(A) (B) (C)

F I G U R E 9 Uncertainties of road friction coefficient.

(A) (B) (C)

F I G U R E 10 Uncertainties of air resistance coefficient.

To further illustrate the robustness of NMPC, several uncertainties are considered in the numerical examples. Since
changes in driving conditions will affect the vehicle performance in practice, the influence of uncertain road friction
coefficient and air resistance coefficient on the system is investigated. The simulation results with Δ𝜇 = ±0.05 deviation
from road friction coefficient 𝜇 = 0.75 are shown in Figure 9, where solid lines denote Δ𝜇 = 0, dash-dot lines and dot
lines representΔ𝜇 = −0.05 andΔ𝜇 = 0.05, respectively. As seen from Figure 9, the system state can still be stabilized near
the reference when the uncertainty of the road friction coefficient exists.

Since the air resistance coefficients Cx and Cy will vary with aerodynamic side slip angle, uncertainties of Cx and Cy
are considered. The simulation results of deviations ΔCx = ΔCy = ±0.1 (Cx = 0.37,Cy = −0.35) are shown in Figure 10,
where solid lines denoteΔCx = ΔCy = 0, dash-dot lines and dot lines representΔCx = ΔCy = −0.1 andΔCx = ΔCy = 0.1,
respectively. As shown in Figure 10, although uncertainties of air resistance coefficient exist, the system is still stable with
the proposed NMPC, and the steady-state error is small. The simulation results show the robustness of NMPC to model
uncertainties.

4.2 Real-time implementation

In this subsection, comparative experiments are conducted to present the effectiveness of Koopman-based MPC.
To obtain the approximately discrete-time linear model (26), the input-output data of the system (15) is collected to

construct data matrices (27). The sequence X′D is predicted by XD and UD with the snapshot number M = 80. Then 200
trajectories are collected by:

1. initial values of states randomly selected in vy ∈ [−1, 1] m/s, 𝛾 ∈ [−0.1, 0.1] rad/s, and vx ∈ [−2, 2] m/s,
2. control inputs randomly selected in Fyf ∈ [−200, 200] and Fxr ∈ [−200, 200],

where the sets are symmetric because (0, 0) is the desired equilibrium point of the transformed system. The sets are
relatively small for better fitting the nonlinear dynamics near unstable equilibrium point.
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SHI et al. 15

(A) (B) (C)

F I G U R E 11 Validation of Koopman linear model.

The root mean square error (RMSE) is used to evaluate the deviation between model (26) and (15), that is,

RMSE =

√
∑N

k=1||xDMDc(k) − xtrue(k)||22
√
∑N

k=1||xtrue(k)||22

× 100%, (42)

where xDMDc(k) and xtrue(k) are the states predicted by (26) and (15), respectively. The system evolutions of (15) and (26)
are shown in solid black lines and dash blue lines of Figure 11, respectively. The initial state is xDMDc(0) = xtrue(0) =
[1 0.1 − 1]T, the control input is uDMDc = [0 0], and the predictive horizon is N = 15. The RMSE is 0.95%, that is, the
deviation is small and the (26) can be used as the prediction model (33b) in Problem 2.

Then, Problem 2 can be solved. To verify the proposed approach, the desired unstable equilibrium point is set with
𝛿

ref
f = −10◦ and vref

x = 30 m/s, that is,

xref =
[

vref
y 𝛾

ref vref
x

]T
= [−7.62 0.20 30]T, (43a)

uref =
[

Fref
yf Fref

xr

]T
= [5749.1 2176.9]T. (43b)

Then the constraints in (33d) and (33e) are obtained from (17):

ΔUD = {ΔuD ∈ R
2 | − 13045 ≤ ΔFyf ≤ 1546.8, −8367.3 ≤ ΔFxr ≤ 4013.5}, (44a)

ΔXD = {ΔxD ∈ R
3 | − 12.38 ≤ Δvy ≤ 27.62, −1.2 ≤ Δ𝛾 ≤ 0.8, −30 ≤ Δvx ≤ 10}. (44b)

The weighting matrices in (34b) for calculating the terminal constraint (33f) and terminal penalty (34c) are consistent
with (39), that is, Q = Q and R = R. Then linear state feedback control law obtained by LQR is

KD =

[
5142.1 −33979.5 106.6
499.1 −537.7 −1748.2

]

. (45)

The weighting matrix of (34c) is

P =
⎡
⎢
⎢
⎢
⎣

6085.7 −19208.9 −595.3
− 19208.9 101430.6 86.2
− 595.3 86.2 2990.0

⎤
⎥
⎥
⎥
⎦

. (46)

As a comparison, an MPC without guaranteed stability is designed to conduct simulation under the same operating
condition. The prediction horizon is N = 15. The initial state isΔxD(0) = [−1 0.2 − 2]T, which corresponds to the initial
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16 SHI et al.

stateΔx0 = [−8.62 0.40 28]T of the controlled system (11). The simulation results are shown in Figures 12,13,14, and 15,
where the solid black lines denote the results of Koopman-based MPC, the blue dash dot lines represent MPC without
guaranteed stability, the dash red lines are the reference states corresponding to xref .

It can be seen from Figures 12,13, and 14 that vehicle lateral velocity, yaw rate, and longitudinal velocity can track
the reference states with small deviations. However, an MPC without guaranteed stability can not stabilize vehicle states.
State trajectories show such phenomenon in vy − 𝛾 phase plane (cf. Figure 15), where the region surrounded by the solid
grey lines represents the projection of the terminal region on the vy − 𝛾 phase plane, which is composed of multiple linear
constraints represented by a polyhedron. Compared with an MPC without guaranteed stability, the proposed approach
can force states to the terminal region and to converge to the desired unstable equilibrium point.

Furthermore, simulation results with uncertain road friction coefficients and air resistance coefficients are shown in
Figures 16 and 17, respectively, where solid lines represent Δ𝜇 = 0 (𝜇 = 0.75) and ΔCx = ΔCy = 0 (Cx = 0.37 and Cy =
−0.35), dash dot lines represent Δ𝜇 = −0.05 and ΔCx = ΔCy = −0.1, and dot lines denote Δ𝜇 = 0.05 and ΔCx = ΔCy =
0.1. It shows that, the deviations between vehicle states and the reference states are small with the proposed approach,
that is, the proposed approach can deal with some model perturbations.

In addition, a more general disturbance is considered in the controlled system (11), that is,

x(k + 1) = F(x(k),u(k)) + d(k). (47)

where

d(k) =

{
[0.01 −0.01 0.01]T, if 55 ≤ k ≤ 65,

[0 0 0]T, if 0 ≤ k < 55, 65 < k ≤ 500.

F I G U R E 12 The evolution of lateral velocity.

F I G U R E 13 The evolution of yaw rate.

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6697 by Jilin U

niversity, W
iley O

nline L
ibrary on [31/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SHI et al. 17

F I G U R E 14 The evolution of longitudinal velocity.

F I G U R E 15 States trajectories in vy − 𝛾 phase plane.

(A) (B) (C)

F I G U R E 16 Koopman-based MPC with uncertainties of road friction coefficient.

(A) (B) (C)

F I G U R E 17 Koopman-based MPC with uncertainties of air resistance coefficient.

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6697 by Jilin U

niversity, W
iley O

nline L
ibrary on [31/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 SHI et al.

(A) (B)

F I G U R E 18 Comparison between Koopman-based MPC and LQR.

The simulation results of the comparison between Koopman-based MPC and LQR are shown in Figure 18.
Figure 18A,B are the evolutions of states and control inputs, respectively, in which the solid black lines represent
Koopman-based MPC, blue dash dot lines represent LQR, red dot lines denote the references, solid red lines are the
constraints of control inputs. As shown in Figure 18, the proposed approach enables the vehicle states to track the
reference values while satisfying the control constraints. In contrast, although LQR can drive vehicle states to the reference
values, it cannot handle any constraint, cf. Figure 18B.

Note that the average computation time of the NMPC and the Koopman-based MPC are 512 and 4.5 ms, respectively.
The computation time of the former is much longer than the sampling time Ts = 10 ms. That is, the Koopman-based MPC
approach is efficient and promising for implementing vehicle drifting in real time.

5 CONCLUSIONS

This paper proposed an NMPC approach for autonomous vehicle drifting, in which stability around an unstable
equilibrium was guaranteed. Based on the 3-DOF vehicle model with a nonlinear tire model, vehicle dynamics char-
acteristics concerning stability region were analyzed by the phase plane method, and the desired unstable equilib-
rium point was calculated. An NMPC with guaranteed stability was designed, which forces vehicles in a sustained
drift, that is, stability around its single unstable equilibrium. The Koopman operator theory and DMDc algorithm
were introduced to obtain the approximately linear model, which reduced the computational burden caused by
nonlinear dynamics. Then the control problem was converted to a QP problem that could be solved within a sam-
pling time. The simulation was conducted with various system uncertainties. Compared with MPC without guaran-
teed stability and LQR, the effectiveness and superiority of the proposed scheme for ensuring vehicle safety under
extreme conditions were illustrated. Future work is to design a tube MPC within the framework of Koopman-based
MPC.27
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